A Spray Interaction Model with Application to Surface Film Wetting

K. V. Meredith*, X. Zhou
Research Division, FM Global, USA
karl.meredith@fmglobal.com and xiangyang.zhou@fmglobal.com
A. Heather
OpenCFD Ltd., UK
a.heather@opencfd.co.uk

Abstract

In a fire suppression environment, sprinkler spray wets solid surfaces via droplet impingement. A framework for modeling the interaction of sprays with solid surfaces, with the intention of simulating fire suppression, has been developed. The spray interaction model includes impingement, splashing, and subsequent liquid-film transport over solid surfaces. The thin film-transport equations for mass continuity, momentum, and energy form the basis for the spray-film interaction model. The model has been implemented in OpenFOAM®† and subsequently coupled with a fire growth model (FireFOAM). Experimental measurements of splashing behavior are shown and used for model validation. Model validation is demonstrated for droplets impinging on wet corrugated cardboard surfaces over a range of Weber numbers. Comparisons include the splashed mass measured as a function of radial distance from the initial impingement location.

*Corresponding author: karl.meredith@fmglobal.com
†OpenFOAM® is a registered trademark of the OpenFOAM Foundation.