Influence of Drop Spacing on Burning of an Emulsified-Drop Stream

Y. Y. Lin1, C. K. Chen2, T. H. Lin3*

1,2,3Department of Mechanical Engineering, National Cheng Kung University, Taiwan
3Research Center for Energy Technology and Strategy, National Cheng Kung University
eva9404@hotmail.com, a0412s@yahoo.com.tw, thlin@mail.ncku.edu.tw

Abstract

Combustion characteristics of water-in-dodecane emulsion drops with various initial spacings were studied experimentally by using a free-falling drop burning apparatus. The initial drop spacings (S_i) were 2.5, 5, 10, 40, 75 (70), 100. $S_i (s/d_i)$ was defined as the ratio of the drop center-to-center distance (s) to the initial drop diameter (d_i). The water content (β) and the oxygen concentration (Ω_{O2}) were fixed at 5% and 21%, while two drop sizes 550 μm and 450 μm were compared. The results showed that the transition of the drop flame occurred for all cases in the experiment. For $S_i > 10$ along the flow direction, the flame around the drops would change from a blue spherical flame to a yellow flame and a wake flame, and the drop flame extinguished later in the downstream region. Soot particles was generated and drops collision and merging occurred to form a flame tube for $S_i = 2.5$ in both cases of $d_i = 550 \mu$m and 450μm. Besides, drop expansion was observed in both cases of $d_i = 550 \mu$m and $d_i = 450 \mu$m, while micro-explosion only occurred in the far downstream region for $S_i = 40$, $d_i = 450 \mu$m. It was also shown that the emulsion drop evaporation rate was not a constant, and the trend of the drop evaporation rate was strongly influenced by changing the initial drop size.

* Corresponding author: thlin@mail.ncku.edu.tw