INFLUENCE OF LOX INJECTOR WALL THICKNESS ON ATOMIZATION AND COMBUSTION OF LOX/CH₄ SPRAYS

Fusetti A., De Rosa M.*, Oschwald M., Haidn O.J.
Institute of Space Propulsion, German Aerospace Center (DLR), Langer Grund 74239 Lampoldshausen, Germany
*corresponding author: marco.derosa@dlr.de

ABSTRACT This paper summarizes the results of a test campaign at the micro-combustor M3 in DLR Lampoldshausen performed with liquid oxygen (LOX)/methane (CH₄); the micro-combustor has complete optical access and is provided with a single coaxial injector. These experiments are a first attempt to show experimentally the influence of the LOX injector wall thickness on the atomization and combustion behaviors. Two LOX injector wall thicknesses (0.4 and 0.6 mm) have been investigated. At injection, the Weber number ranged between 2.0×10^3 and 1.2×10^4, the fuel to oxygen momentum flux ratio J between 0.1 and 0.7. Combustion chamber pressures between 0.15 and 0.3 MPa were achieved. High speed flow visualization techniques have been applied; a high speed CCD camera with 4 kHz frame rate is used for shadowgraph, whereas an ICCD camera with 9 kHz frame rate is adopted for OH imaging in the UV range. In the thicker wall injection configuration, atomization is found to be more effective and combustion efficiency is enhanced, because of a more stable combustion, occurring nearer to the injector.

Keywords: Methane, Coaxial injector, Injector wall thickness, Liquid jet, Lift-off distance, Combustion efficiency

1. INTRODUCTION

In the last few years there has been an increasing interest in green propellants like hydrocarbons that likely will substitute hypergolic and solid propellants in the near future. Compared to hypergolic and solid propellants [1], they are environmentally friendly and require much less safety measures in handling operations; hydrocarbons are less chemically aggressive and this results in higher safety for engine components.

Among hydrocarbons, CH₄ seems to be particularly promising for several reasons: the couple LOX/CH₄ has the highest specific impulse [2]; considering the use of the fuel propellant in the cooling system, CH₄ has the best cooling capabilities and lower coking attitudes [3]. Compared to hydrogen, CH₄ provides higher density thus higher thrust-to-weight ratio, has much lower costs and it is easier to handle because of higher critical temperature.

Several test campaigns investigating cryogenic LOX/CH₄ spray combustion have been performed at M3 test facility at DLR Lampoldshausen [4, 5]; in the last test campaign the focus is moved to the near field zone that means the zone near the injector. Some authors have pointed out the importance of the LOX injector wall thickness: this geometrical parameter can affect the instability wavelength that occurs in the liquid jet [6] and therefore the process of atomization. Other authors [7] have shown how it may have an important role in the stabilization of the flame near the injector. Therefore it is worthwhile to understand if and how the LOX post thickness can affect the atomization, flame stabilization and combustion processes when liquid oxygen and gaseous methane are injected through a coaxial injector.

2. EXPERIMENTAL SETUP

The experiments have been performed at the M3 test facility in DLR Lampoldshausen. The test facility has a horizontally mounted combustion chamber with un-cooled optical quartz windows for the complete optical access in the chamber. The combustion chamber is equipped with a single coaxial injector. The coaxial annulus diameter can be varied in order to achieve different injection conditions. The LOX post inner diameter is fixed at 1.2 mm. Two LOX post thicknesses were used: 0.4 and 0.6 mm. The ignition source is a fuel-rich ($r_{fo} \approx 2.0$) hydrogen/oxygen fed pilot flame ignited by a glow plug.

A typical test lasts about 2 seconds: steady conditions are reached after 300 ms; after this time it is also highly reasonable not to consider the influence of the pilot flame and of nitrogen purge (made before each test) on the main flame. Images and data are analyzed after this time so that, in this paper, we refer to steady conditions.

The diagnostic set-up is composed of sensors distributed along the whole test bench: in particular, piezoelectric sensors measured the combustion chamber pressure and thermocouples were used for the wall temperature of the combustion chamber.

The wide quartz windows allow using different optical diagnostic techniques simultaneously. The spray has been visualized by shadowgraph with Z-configuration set up. Images are recorded with a high-speed CCD camera (FASTCAM Ultima 1024) with high acquisition rate (4 kHz): the resolution is approximately 0.42 mm/pixel. A high speed intensified CCD camera (Photron Ultima I²) fitted with a Nikon UV objective and an OH filter has also been used for recording the OH radical emission; the acquisition rate is 9 kHz and the resolution is around 0.50 mm/pixel.
OH emission and shadowgraph images are processed through several scripts (two samples are shown in Fig. 1 and 2). Each frame of any single test has been analyzed in order to detect the position of the flame base with respect to the injector (lift-off distance), the flame spreading angle and the length of the liquid jet (that means the distance from the injector where the continuity of liquid jet is broken). Since the cameras record the emission of OH radicals and the liquid presence through the line of sight, uncertainties arise during the procedure: it is in fact possible that flame structures out of the focal plane are regarded as flame edge or liquid lumps out of the focal plane can cover the actual break-up region. However, the high acquisition rate, and thus the large number of images recorded, provides a sufficient statistics so a certain degree of confidence on the overall trend is reasonable.

3. TEST MATRIX

The comparison between the two LOX post thicknesses is made on the base of similar Weber numbers, fuel to oxygen momentum flux ratios J and combustion chamber pressure. The propellant mixture ratio r_{op} can be also reasonably considered similar. In Fig. 3 test conditions are presented in a J-We graph. The error bars in this and in all following figures represent the fluctuations (standard deviation) of each parameter with time during the hot flow. Fluctuations in the injection parameters J and We during combustion are mainly due to the combustion chamber pressure fluctuations.

For all tests, combustion chamber pressure is limited between 0.15 MPa bar and 0.3 MPa to avoid dangerous pressure peaks during the ignition. This poses some limitations on Weber and J numbers, too: Weber numbers vary between 2.0×10^3 and 1.2×10^4, J number range between 0.1 and 0.7. Tests were planned to be run at $r_{op}=3.4$: this value optimizes the vacuum specific impulse when the combustion chamber pressure is 13 MPa, and is therefore representative of a full-scale liquid rocket engine combustion chamber.

4. ATOMIZATION

Referring to Fig. 4, one can see that for J numbers lower than 0.3 the thicker post gives best results in terms of liquid core length: the jet is broken in a shorter way. Going to higher J numbers no difference is found: similar core lengths are found using the two thicknesses. We can reasonably say that the liquid core length is less sensible to J number if the thicker LOX post is used. In Fig. 5 and 6, two similar tests with the two different thicknesses are shown: the difference in terms of atomization can be clearly pointed out.

The order of magnitude of the data is quite similar to the one predicted by Villermaux in [6]:

$$\frac{L}{d_0} = AJ^{-1/2}$$

(1)
Moreover, setting the pre-factor A from 8 to 12 yields a reasonable representation of our data by Eq. (1). This difference in the pre-factor can be due to the role of the combustion, to the confining effect recirculation zone and to evaporation that may affect the atomization process.

Considering the relation with the Weber number (Fig. 7), we can see that atomization is still different with the two LOX posts. Again, the length of the liquid core is quite insensible at Weber number (or it slightly decreases) if the thicker post is used, while huge variations are obtained with the thinner post.

5. COMBUSTION

Firstly, results about the lift-off distance are shown, that means the distance between the flame base and the injector. No particular differences can be seen between the two LOX post thicknesses. Nevertheless, it is apparent that atomization plays an important role in anchoring the flame near the injector: considering the 0.4 mm LOX post, for $J < 0.6$ we see in Fig. 8 a decreasing lift-off distance with increasing J. For this plot the single data point at $J = 0.65$ shows for unresolved reasons a significant deviation from the trend of all other data points in respect to the intact core length (Fig. 4) as well as for the lift-off distance (Fig. 8). For the 0.6 mm post, no significant trend for the dependence of the lift-off distance on J is seen.

For both LOX-post thicknesses, an increase of the lift-off distance with the We number is observed (Fig. 9), a dependency less pronounced in the case of the thicker post of 0.6 mm.

Eventually, it is interesting to note that in all cases the lift-off distance is shorter than the break-up length (Fig. 10): this means that the flame attaches in a zone where atomization is not complete at all; therefore, vaporization of droplets created by primary break-up and evaporation of LOX from the intact jet and the mixing of gaseous oxygen with the methane recirculation zone downwards the post lip with $A=6-8$ and where d_0 is the inner diameter of the LOX post (fixed at 1.2 mm).
play a significant role. For the 0.4 mm post, a good correlation of the intact core length and the lift-off distance is observed. The data point for $J = 0.65$ is well grouping with the other data. For the 0.6 mm post, no significant correlation between liquid core length and lift-off distance is visible.

The mixing of propellants can be enhanced with the thicker post because vortices detaching from the post lip are bigger: this can explain why with the thicker post the lift-off distance is quite independent from the typical parameters of atomization J and Weber.

A parameter that shows the influence of the post thickness is the horizontal center position of the OH emission intensity. An intensity center near to the injector shows a flame developing early in the combustion chamber. Fig. 11 shows the horizontal intensity center non-dimensional distance from the injector head with respect to the Weber number. Nearly all tests with the thicker post of 0.6 mm show a flame nearer to the injector head than those with the thinner post of 0.4 mm. The flame is also found to be more stable with the thicker injector post, as can be clearly seen from Fig. 12. There, the standard deviation of the intensity center position indicates the amplitude of the horizontal oscillations of the flame during each test.

As no relation is found between lift-off distance and pressure or r_{of}, we can conclude that the anchoring of the flame is essentially dependent by what happens near the injector (primary atomization, droplet and intact liquid jet evaporation, mixing).

Another important parameter is the flame-spreading angle: it is an indicator of the spreading of fresh propellants in the combustion chamber. The flame angle on the average image of each test was calculated (Fig. 13): in fact considering the single frames, big uncertainties arise because the edge of the flame is irregular. Again, no particular difference is found using the two LOX posts, but there is a good linear relation between the flame angle and the Weber number (Fig. 14).

Moreover, a linear relation is found between the flame angle and the lift-off distance (Fig. 15): this means that with the operative conditions tested we cannot obtain in the same moment a good anchoring of the flame near the injector.
Fig. 13: Sample of an average image of OH emission: the edge is well defined and the flame angle is easy to be detected.

Eventually, as expected, if the flame angle increases the combustion chamber wall temperature increases due to the higher heat transfer from the reaction zone to the wall.

The last important parameter examined in the present work was the characteristic velocity c^*:

$$c^* = \frac{p_r A}{\dot{m}}$$ \hspace{1cm} (2)

In particular following quality factor was considered:

$$\xi_{c^*} = \frac{c^*}{c_{id}^*}$$ \hspace{1cm} (3)

the ratio between the actual c^*, obtained with the data from the tests, and an ideal c^* (c_{id}^*) computed by Gordon-McBride chemical equilibrium software CEA [8] considering the measured mass flows of propellants. This factor is a measure of combustion efficiency.

Fig. 14: Flame angle vs. Weber number

Fig. 15: Flame angle vs. lift-off distance

Fig. 16: ξ_{c^*} vs. J

Fig. 17: ξ_{c^*} vs. Weber number

It is interesting to observe that, considering any parameter, this ratio is higher in all cases (except one) with the thicker post (Fig. 16 and 17): the combustion process is more effective if the thicker post is used.

This can be due to the better atomization (at high Weber and low J) but actually no relation is found between ξ_{c^*} and the liquid core length (maybe the combustion
chamber is too long to see a correlation since any influence may be damped out due to the large residence time of the propellant in the combustion chamber). Another possible explanation is the better mixing of fresh propellants due to the wider shear layer generated by the thicker post: in this case the geometry of the injector plays an important role.

No relation is found between the combustion efficiency \(\xi_c \) and the combustion chamber pressure (increasing pressure means increasing the reaction velocity): this tells us that in such tests, the combustion processes are more affected by the big recirculation zone of combustion products than by other typical parameters, i.e. pressure and mixture ratio \(r_{of} \).

6. CONCLUSIONS

Experimental results of LOX/CH\(_4\) spray combustion have been shown. The aim of this test campaign was the study of the influence that the LOX post thickness may have on atomization and combustion processes. Two different thicknesses (0.4 mm and 0.6 mm) were used. The results are summarized here:

- Using the thicker post, atomization is quite independent from typical parameters like \(J \) and Weber; with the thinner post, the liquid core length increases at low \(J \) numbers and high Weber numbers. We can conclude that for these conditions, atomization is more effective if the thicker post is used.
- There is not a clear relation between the flame lift-off distance and \(J \) and Weber, when the thicker post is used; with the thinner post, the lift-off distance increases when the liquid core length increases, too.
- The flame intensity center lies nearer to the injector and is more stable for the thicker post, for the whole test matrix investigated.
- Considering all tests, we could see that the flame attaches in a region where the liquid core is still intact: therefore other processes (i.e. primary break-up, evaporation, recirculation zone) must be considered in the anchoring of the flame.
- No particular dependence on LOX post thickness was found for the flame angle: similar values were obtained for both the injectors and a good linear relation between flame angle and Weber was found. The same linear relation is found between the flame angle and the lift-off distance: therefore we cannot obtain at the same time a good anchoring of the flame and a good spreading of propellants in the combustion chamber.
- Considering the combustion efficiency, with the thicker post higher values in terms of characteristic velocity ratio were always obtained. No relation was found between this ratio and the studied parameters. \(\xi_c \) seems to be unrelated with the atomization efficiency, i.e. liquid core length. Therefore one possible explanation of the higher combustion efficiency with the thicker post is the bigger recirculation zone behind the LOX post lip: it can favor a more effective mixing of fresh propellants reducing the characteristic time of reaction.

7. ACKNOWLEDGMENTS

The support of Dr. Liu Hong (Northwestern Polytechnic of China) to the campaign and of Prof. Luigi DeLuca to Andrea Fusetti is gratefully acknowledged here.

8. NOMENCLATURE

\[
\begin{align*}
A_i & \text{ area of exit nozzle [m}^2]\text{]} \\
c^* & \text{ characteristic velocity [m/s]} \\
d_0 & \text{ inner LOX post diameter [m]} \\
J & = \frac{\rho_{CH4} u_{CH4}^2}{\rho_{LOX} u_{LOX}^2} \text{ fuel to oxygen momentum ratio} \\
L & \text{ liquid core length [m]} \\
\dot{m} & \text{ propellant mass flow [kg/s]} \\
p_c & \text{ combustion chamber pressure [MPa]} \\
r_{of} & \text{ fuel to oxygen mass flow ratio} \\
u & \text{ velocity of propellants [m/s]} \\
\xi & \text{ Weber number} \\
x & \text{ lift-off distance [mm]} \\
\rho & \text{ density of propellants [kg/m}^3]\text{]} \\
\sigma & \text{ surface tension of LOX [N/m]} \\
\end{align*}
\]

9. REFERENCES